Hello Spam!
PYTHON BASICS

Jui Pann

I Eggs

= Prerequisites

= Hello Spam!

= DataTypes

= Variables, Operators, and Value Assignment
= Dynamic Typing

= String, List, Dictionary, Tuple
= Statements

= (QOdds-and-Ends

= Python Scoping and Function
= Python Module

= QOP, Class, Object

I Prerequisites

= Download pietty for establishing ssh

connections.
= http://ntu.csie. org/~p|a|p/p|etty/
PieTTY Configuratio

It's Easy To Create Your Connection.

v Host Name (or IP address) Port
- ‘_ 140.112.149.68 - 22
(") Telnet (BBS) @) SSH

User Interface
W|Menubar [|PuTTY mod [¥] English UI

I8¢

1AL

PieTTY Information

PieTTY Version 0.4.00 (beta 14) by
Hung-Te Lin <piaip@csie.org>

About | Open || Cancel |

I UNIX commands

= Basic instructions
= passwd: change password
= exit: logout
= ps: show processes

° ps aux | grep xxx: show processes with keyword

I UNIX commands

= Useful commands
° man: manual page
o |s: list the contents of current folder
= |s -a: list all (including the hidden files)
o |s —aux : list all files with detailed information
o ¢cp : copy files from one folder/directory to another
o ¢p —r : copy the whole folder to another
o mkdir : create a folder
= rmdir: delete a folder
= pwd : display your current path

I UNIX commands

= More useful commands
= ¢d: change folder
= rm : delete files
= rm —r : remove the whole folder
= tar: pack and/or compress files
= mv : move or rename file
= exit : logout
= cat: read a file
= more: read a file with scrolling by enter or space key
= |less: read a file with scrolling by PgUp or PgDn

I UNIX Editors

Connection Edit View Window Option Help
21

“ Nano

" Vim
= gedit
= joe

" emacs

I vim commands

= To open or edit afile:

= |nsert text: |

= Move the cursor: h (<), j({), k(1) (=),
PgUp, PgDn, Home (0), End($).

= Move n letters: n[space]
= Move n lines: n[enter]

I vim commands

= Move to the head of the file: gg
= Move to the tail of the file: G
= Move to the nth line of the file: nG

= Delete a letter: x
= Delete n letters: nx
= Delete aline: dd

= Delete nlines: ndd

I vim commands

= Delete lines to the tail: dG
= Delete lines to the head: dgg
= Delete letters to the head of line: do

= Delete letters to the tail of line: ds$
= Copy theline: yy

= Copy n lines: nyy

= Copy lines to the tail: yG

= Copy lines to the head: ygg

I vim commands

= Copy letters to the head of line: yo
= Copy letters to the tail of line: y$

= Paste on the next/last line: p/P

= Merge two lines:]

= Undo: u

= Redo: [ctrl]+r

= Repeat the last action: .

I vim commands

= j: enter INSERT mode at the cursor position

= a: enter INSERT mode at the next position of
the cursor

= 0: enter INSERT mode at the next newline of
cursor position

= O:enter INSERT mode at the last newline of
cursor position

= Esc: enter VIEW mode

I vim commands

=W write the file

e simply quit vim

= .q! quit vim without saving
= :W(Q save and quit vim

= :n1,n2s/wordi/word2/g

= Replace word1 with word2 from line n1 to line n2
= :1,%$s/wordi/word2/g

= Replace word1 with word2 from head to tail of file

Eggs

= Prerequisites

= Hello Spam!

= DataTypes

= Variables, Operators, and Value Assignment
= Dynamic Typing

= String, List, Dictionary, Tuple
= Statements

= (QOdds-and-Ends

= Python Scoping and Function
= Python Module

= QOP, Class, Object

14

Python

= Proposed by Guido van Rossum at 1989,.

= Python originally means:

i Ny

........

y A -

L

15

I Python Philosophy

= Beautiful is better than ugly.

= Explicit is better than implicit.
= Simple is better than complex.
= Complex is better than complicated.

= Readability counts!

Why Python?

= Not hard to read, write and maintain

= No compiling or linking: short development cycle

= No type declarations: simpler, shorter, flexible

= Automatic memory management: 3R

= OOP: code structuring and reusability

= Interactive shell interface: in-time execution results

= (Classes, modules: programming-in-the-large support
= Famous: Google, YouTube, NASA, NSA, Pixar, etc

17

Hello Spam!

= Enter Python Shell

python
1t, Mar 22 2014,

icense™

for more

information.

18

I .py script(file)

. Createa pyflle

0 Execute It

tcdl@ofctl:~/pythons python hello.py
Spam: Hi E ggs, My name is Spam
Eggs: Hello .::-pr:u. !

1048576

Eggs

= Prerequisites

= Hello Spam!

= Data Types

= Variables, Operators, and Value Assignment
= Dynamic Typing

= String, List, Dictionary, Tuple
= Statements

= (QOdds-and-Ends

= Python Scoping and Function
= Python Module

= QOP, Class, Object

20

I Components

42

Values _{ 12315
[integer & \ “Hello!“]

float (real number) P Types
_—

string (of characters)

i I mr@sry |

Expressions
i 1.0/ 3.0

ﬁ +'ol' |

I Type: int

= Values: -100, 0, 123, 1048576, etc.
= Operations: +, -, *, [, **(power), %(modulo)
= Operations on int values yield an int
o 1/2=0
o 3[/2=1
= Toobtain1.5for3 /27!
o float(3) / 2
o 3.0/2
o 3./2

I Type: float

= Values: -10.23, 0.0, 123.456, etc.
= Operations: +, -, *, [, **, %
= Exponent notation:

= A day has 8.64e4 (86400) seconds
2 Boltzmann constant: 1.38e-23 joule/K

I Type: str

= Values: sequence of characters

= ‘Hello Spam!’
o ‘a # b & abc $ abcdefq’

= Operation: + for catenation
o ‘He' +'llo" = ‘Hello’
! o Yjoin’ + 4 + ‘free’ results in an error message
= Yjoin' +'4' + ‘free’ =‘joingfree’
= Operation: * for repeating
o "TANET" * 3 ="TANETTANETTANET"

24

Type: bool

= Values: True, False
= Operations: and, or, not, ~ (xor; exclusive or)
= Often come from comparisons:

= Order comparison: <, <=, >, >=
o Equality: ==, !=

25

I Type Query and Conversion

= >>>type(2.5)
o <type ‘float’>
= >>>type(True)
= <type ‘bool’>
= >>>int(3.14)
° 3
= >>> float(2)

0 2.0

Eggs

= Prerequisites

= Hello Spam!

= Data Types

= Variables, Operators, and Value Assignment
= Dynamic Typing

= String, List, Dictionary, Tuple
= Statements

= (QOdds-and-Ends

= Python Scoping and Function
= Python Module

= QOP, Class, Object

27

I Precedence of Operators

= Exponentiation: **

= Unary operators: +, -

= Binary arithmetic: *, /, %
= Binary arithmetic: +, -

= Comparisons: >, >=, <, <=
= Equality: ==, !=

= Logical not

= Logical and

= Logical or

I Enhanced & Bitwise Operators

= Enhanced operators: +=, -=, *=, [=, %=, **=
9 X+=ymeansX=X+Yy
o X **=ymeansXx=XxX**y
= No x++ expression in Python!
= Bitwise operators: &(and), |(or), A(xor), ~(not),
<<(left shift), >>(right shift)
5O>>>X =4
o >>>X<K1
5 >>> X |1

o >>>SX &1

I vVariables & Value Assignment

= >>>X =3
= >SS X
3
= >SS X = X+2
= >>> X
5
= >SS X=X*2+2
= >>> X
o112

Eggs

= Prerequisites

= Hello Spam!

= DataTypes

= Variables, Operators, and Value Assignment
= Dynamic Typing

= String, List, Dictionary, Tuple
= Statements

= (QOdds-and-Ends

= Python Scoping and Function
= Python Module

= QOP, Class, Object

31

Dynamic Typing

Python is a dynamically typed language

= Variables can hold values of any type

= Variables can hold different types at different times
= Use type(x)to find out the type of the value in x

= Use names of types for conversion, comparison

>>> X =

>>> type(x)

o <type 'int'>
>>>X =X [2.
>>> type(x)

= <type 'float'>

32

I Type Confirmation

" >>>X=§
= >>>type(x)
o <type 'int'>
= >>> type(x) == float
o False
= >>> type(‘abcd’) == str

o True

Eggs

= Prerequisites

= Hello Spam!

= DataTypes

= Variables, Operators, and Value Assignment
= Dynamic Typing

= String, List, Dictionary, Tuple
= Statements

= (QOdds-and-Ends

= Python Scoping and Function
= Python Module

= QOP, Class, Object

34

I String: Text-Valued Variable

\\V/{

= Use " (preferred) or *” to quote characters.

= When quotation marks are needed in the
string, use another one.
= ‘Happy "B"irthday’
o “"Alles ‘G'ute zum Geburtstag”

: = Escape characters:

\' single quote
\" double quote

\n new line
\t tab

\\ backslash
35

Indices of a String

= >>>x ="'Robin van Persie’
= >>> Xx[0]
o R
= >>> |len(x)
o 16
= >>>x[6:9]
= ‘van’
= >>> X[6:]
o ‘van Persie’

36

I Other String Methods

= >>>'%'|In X
= False

= >>>'Per’In X
o True

= >>> x.index('Vv)
o 6

= >>> x.count('l’)

02

I Even More String Methods?

= >>>from string import *

= >>> dir()
° ['Formatter', 'Template’,'__builtins__','_ doc_ ,
'_name__','__package__', 'ascii_letters', ‘ascii_lowercase’,

'ascii_uppercase', 'atof', 'atof_error', 'atoi’, 'atoi_error', ‘atol’,
‘atol_error', 'capitalize’, '‘capwords', 'center’, ‘count’, 'digits’,
'expandtabs’, 'find’, 'hexdigits', 'index’, ‘index_error', ‘join’,
'joinfields’, 'letters’, 'ljust’, 'lower’, 'lowercase’, 'Istrip’,

i 'maketrans’, 'octdigits’, 'printable’, 'punctuation’, ‘replace’,
'rfind’, 'rindex’, 'rjust’, ‘rsplit’, 'rstrip’, 'split’, 'splitfields', 'strip’,
'swapcase’, 'translate’, 'upper’, 'uppercase’, 'whitespace’,
'Zfill']

= Refer to https://docs.python.org/2/library/

38

I Python Modules

.1. Number-
theoretic and
representation
functions These functions cannot be used with complex numbers; use the functions of the same name from the

9.2.2. Power and emath module if you require support for complex numbers. The distinction between functions which
o g%r;qg'gniﬁggf support complex numbers and those which don't is made since most users do not want to learn quite
functions as much mathematics as required to understand complex numbers. Receiving an exception instead
9.2.4. Angular of a complex result allows earlier detection of the unexpected complex number used as a parameter,

ity ool so that the programmer can determine how and why it was generated in the first place.

standard.

ing functions are provided by this module. Except when explicitly noted otherwise, all
ralues are floats.

— !

Argument list

math.ceil (X)
Return the ceiling of x as a float, the smallest integer value greater than or equal to x.

sign(x, ¥)

What the function evaluates to]"

that supports signed zeros, copysign(i.0, -0.0) returns

This Page

Report a Bug

Show Source New in version 2.6.

Quick search math. £abs ()
Return the absolute value of x.

e —
Go

it Fambawial {v\

39

Python Modules

= Frequently used modules:
o jo: Read/write from files
o math: Mathematical functions

o random: Generate random numbers
= Distribution selectable

= string: Useful string functions
= sys: Information about your OS

= Refer to:

O

O

40

https://docs.python.org/2/library/
https://docs.python.org/2/py-modindex.html
https://docs.python.org/2/py-modindex.html
https://docs.python.org/2/py-modindex.html

I Import a Python Module

= >>>import math
= >>>import random
= >>> math.pi

" 3:141592653589793
= >>> print math.sin(math.pi/6)

= >>>random.random()
= >>> int(random.random()*10)+1
= >>>random.randint(z,10)

I List

= Alistis a series of data inside [J(brackets).
= [tems are separated by *,”(comma).

= [tems are not necessarily of the same type.
= |tems are editable.

= A list can contain another list

= >>>x=[2,5,'abc',10.1,""", True]
= >>>type(x[2])
o <type 'str'>

List

>>> type(x)
o <type 'list'>

>>> X[2:5]

@ ['abc', 10.2, "!!']

>>> X[1] = ‘hello’

>>> X

O [2,

>>> X[

@ [2,

Ne

Ne

lo', 'abc’, 10.1, """, True]

1=[4,5]

lo', [4, 5], 10.2, """, True]

43

List

= >>> x.append(s55)
= >>> X
@ [2, 'hello’, [4, 5], 10.1, "', True, 55]
= >>>Vy=1[2,8,5,7,1,4]
= >>>vy.s0rt()
° [1,2, 4,57, 8]
= >>>vy.pop()
= >>>y
° [2, 4,5,7, 8]

44

I List

= >>>y.reverse()
= >>>y

= [8,7,5 4 2]
= >>>vy.insert(2,'hi')
= >>>y

= [8,7,'hi', 5, 4, 2]
= >>>del y[3]
= >>>y

° [8,7,'hi', 4, 2]

45

List

= >>>y+[6,5,4]
° [8,7,'hi', 4,2,6,5, 4]
= >>>y
@ [8,7,'hi', 4, 2]
= >>>y +=[6,5,4]
= >>>y
° [8,7,'hi', 4,2, 6,5, 4]
= >>matrix = [[1,2,3],[4,5,6],[7,8,9]]
= >> matrix[2][1]

46

List

= >>>7=[6,5,0, 1, 2]
= >>>sum(z)
= >>>[min(z), max(z)]
= >>>range(s)

@ [0, 1, 2,3, 4]
= >>>range(2,7)

@ [2,3, 4,5, 6]
= >>>range(2,7,2)
° [2, 4, 6]

47

Dictionary

= >>>dic = {'Robben’:11, ‘Sneijder’:10, ‘Kuyt":15}
= >>>dic['Sneijder’]
010
= >>>"'Robben’ in dic
o True
= >>> dic.keys()
= ['Robben’, 'Sneijder’, 'Kuyt']
= >>> dic['Kuyt'] = ['goal’,'miss']

48

Dictionary

>>> dic

= {'Robben': 11, 'Sneijder": 10, 'Kuyt'": ['goal’, 'miss']}
>>> dic['Kuyt'][0]

= ‘goal’

>>> dic.pop(‘Sneijder’)

9 10

>>> dic

= {'Robben': 11, 'Kuyt": ['goal’, 'miss']}

49

I Tuple

= Atupleis aseries of data inside ()(parentheses).
= |tems are separated by *,”(comma).

= |[tems are not necessarily of the same type.

= |[tems are NOT editable.

= Atuple can contain another list or tuple.

= >>>11=(6,5,4)
= >>>12=9,8,7

I Tuple

= >>> 11+ 12

= (6,5,4,9 8,7)
= >>>12[1]

= >>> 13 ='hello’,'hola’,'boujour’
= >>>13 %2
. = (‘hello’, 'hola’, 'boujour’, 'hello’, *hola’, 'boujour’)
= >>>tz =t1[0],t2[1:3]
= >>>t4
@ (6, (8, 7))

I Tuple

= >>>r=[x*g5forxin ta]
= >>>r
= >>>t1[0]=1

= TypeError: 'tuple' object does not support item
assignment

= >>>t1 = |ist(t1)
= >>>t1[0]=1
= >>> 11 = tuple(ta)

= >>> 11

Eggs

= Prerequisites

= Hello Spam!

= DataTypes

= Variables, Operators, and Value Assignment
= Dynamic Typing

= String, List, Dictionary, Tuple
= Statements

= (QOdds-and-Ends

= Python Scoping and Function
= Python Module

= QOP, Class, Object

53

if/elif/else Statement

= Usage: if <test1>:
<statementsi>

elif <test2>:
<state2ifiﬂ£;;;::::::::>

else:
<statements3>

optional

I if/elif/else Statement

yes yes

Is the test true? Is the test true?

execute the execute the 'else’ execute the 'if
controlled statement(s) controlled statement(s) controlled statement(s)
m
Y
execute statement execute statement
after if statement € > after iffelse statement <

if if/else

55

if/elif/else Statement

statement3

statementl

statementz

v

if/elif/else

56

if/elif/else Statement

= Example:

57

map Function

Usage: map(<function>,<sequence>)
Example 1:

o >>>X=[1.2,3.4, 5.6, 7.8]

2 >>>y =map(round,x)

Example 2:

o >>>x =['55’, ‘66, 'derdi’, 'y’']

2 >>>y =map(len,x)

Example 3:

s >>> X = ['Abian’, ‘MyAngel’, ‘DongYingBaZhu']
5 >>> vy = (str.lower,X)

58

for Statement

= Usage: for <variable> in <sequence>:
<statements>
= Example 1:
= >>>foriin range(s):
oL, print i+1
= Example 2:
o >>>foriin[2,4,6,8,10]:
oL, print **" * |

59

I for Statement

= Example 3:
0 >>>t=[(2,2),(3,4),(5,6)]
= >>>for (3, b) in t:
° .. print a*b

= Example 4:
o >>>5="'0nsOranje’
= >>>foriin range(len(s)):
oL, print'’ * i, s[i]

I while Statement

= Usage: while <test>:

<statementsi>
else:
execute the
<Statement52> controlled statement(s)
v
optional et ot

61

I while Statement

= Example 1:
o >>> X ="'Spam’

o >>> while x:

oL, print x,
oo, X = X[1:]
: = Example 2:

° >>>3,b=0,10
= >>> whilea<b:
oo, print a,

0oL, d+=1

I break/continue/pass

= Appearsonly in loops.

= break: exit the loop right away, neglecting all
the statements in loop.

= continue: go to the beginning of the loop,
neglecting the rest statements.

= pass: do nothing, gsedteshew-eofyour
speciatyy, used to occupy a position for
further revision.

63

A Toy

1
4

F 1 not

k =

break

in nums:

A “Larger” Toy - Craps

[0 Y =S A I ¥ B S

-] "

return randint(l,) + randint/(

Eggs

= Prerequisites

= Hello Spam!

= DataTypes

= Variables, Operators, and Value Assignment
= Dynamic Typing

= String, List, Dictionary, Tuple
= Statements

= (Odds-and-Ends

= Python Scoping and Function
= Python Module

= QOP, Class, Object

66

I Read and

= >>> myfile =
= >>>x = myfi
= >>>y = myfi
= >>> myfile.c

write file

open(‘filename’,'r’)
e.readline()
e.read()

ose()

= >>> newfile = open(‘towrite’,'w’)

= >>> newfile.write(*g11 was a \n’)

= >>> newfile.write(*‘god-damned hoax!\n’)

= >>> newfile.close()

67

Exception handling

= >>>x =dir(__builtins_)
= >>>y =]
= >>> foriin range(len(x)):

o if ‘Error’ in x[i]:
- y.append(x[i])
= >>>y

]

['‘ArithmeticError', 'AssertionError', 'AttributeError', '‘BufferError’,
'EOFError', 'EnvironmentError', 'FloatingPointError', 'IOError’,
'ImportError', 'IndentationError’, 'IndexError', 'KeyError', ‘LookupError’,
'MemoryError', 'NameError', 'NotimplementedError', 'OSError’,
'OverflowError', 'ReferenceError', 'RuntimeError', 'StandardError’,
'SyntaxError', 'SystemError', 'TabError', "TypeError', 'UnboundLocalError,
'UnicodeDecodeError', 'UnicodeEncodeError', 'UnicodeError’,
'‘UnicodeTranslateError', 'ValueError', 'ZeroDivisionError']

68

I try.. except ..

= Usage: try:
<statementi>
except (<errori>):
<statement2>
i (else:)

= When an exception is encountered in statementa,
jump to the corresponding block.

= else block will only be executed when no exception.

69

An Example

T (s, O A BN =S S N A T]

70

Eggs

= Prerequisites

= Hello Spam!

= DataTypes

= Variables, Operators, and Value Assignment
= Dynamic Typing

= String, List, Dictionary, Tuple
= Statements

= (QOdds-and-Ends

= Python Scoping and Function
= Python Module

= QOP, Class, Object

71

Python Scoping

Built-in (Python)
Names preassigned in the built-in names module: open, range,
SyntaxError....

Global (module)

Names assigned at the top-level of a module file, or declared
global in a def within the file.

Enclosing function locals

Mames in the local scope of any and all enclosing functions
(def or Lambda), from inner to outer.

Local (function)
Names assigned in any way within a function (def
or 1lambda), and not dedlared global in that function.

72

I Functions

tcd@ofctl:~/pythons vim simplearith.py

2 def add(a,b):

print a,
return atb

6 def minus(a,b):

= >>>import simplearith

= >>> x = simplearith.add(4,1)
o 4+1=§

= >>>y =simplearith.minus(4,1)
° 4-1=3

73

Functions

= Keywords: def, return
= Another example: Fibonacci sequence

for i in range(x-1):
a,b = b, atb
return a

or i in range(l,21):

fib.append(fibonacci (1))

74

Functions

= Execution time function definition is allowed.
= Function overloading is allowed.

12 print func(y)

75

Functions

= Roll a die many times to see if it is fair.

1 random randint

= Of course you have to enter an integer!

76

I More about Functions

= Default value setting:
= >>> def funa(a, b, ¢): print a,b,c
= >>> def fun2(a,b,c=1): print a,b,c

= *pargs & **kargs are used to pass a variable
number of arguments to a function.

- o *pargs is used to pass a non-keyworded, variable-

length argument list.

o **kargs is used to pass a keyworded, variable-
length argument list.

77

More about Functions

Lo a0 [N

N I

iy

78

Eggs

= Prerequisites

= Hello Spam!

= DataTypes

= Variables, Operators, and Value Assignment
= Dynamic Typing

= String, List, Dictionary, Tuple
= Statements

= (QOdds-and-Ends

= Python Scoping and Function
= Python Module

= QOP, Class, Object

79

I Haunted by Module

= A module is intrinsically a file containing
Python definitions and statements.

= A module can contain executable statements
as well as function definitions.

= The statements in a module are intended to
. initialize the module. They are executed only
the first time the module name is
encountered in an import statement.

80

I Haunted by Module

= The built-in function dir() is used to find out
which names a module defines. It returns a
sorted list of strings.

= >>> dir()

= >>> dir(__bulitins__)
= >>>import math

= >>> dir(math)

I reload

= Re-import an imported module after revision.

= Often used when restarting the entire
application is costly.

= >>>import reloadeg
= >>>reloadeg.printer()
= >>> re|oad(reloadeq)

= >>>reloadeg.printer()

Import Nested Modules

= To figure out your current search path:
o >>> import sys
= >>> sys.path
' [...... 'fusr/local/lib/python2.7/dist-packages’,......]
= To import the module in dir1/dir2/, simply type:

= import dir1.dir2.<module name>

= Remembertoadda__init__.pyina user-
defined module dir.

83

Eggs

= Prerequisites

= Hello Spam!

= DataTypes

= Variables, Operators, and Value Assignment
= Dynamic Typing

= String, List, Dictionary, Tuple
= Statements

= (QOdds-and-Ends

= Python Scoping and Function
= Python Module

= QOOP, Class, Object

84

Viva OOP!

= Object-oriented programming is an approach
to design modular, reusable systems.

Mame
_ / Attributes
Name s
ame
Attributes | 4 Behaviors . .
Attrlbutes
Behaviors y
Behaviors
\ messages
Mame | Mame
Attributes Attributes
Behaviors Behaviors

An object-oriented program consists of many well-encapsulated
objects and interacting with each other by sending messages

85

Viva OOP!

= The goals of OOP are:

o Increased understanding
o Ease of maintenance
o Ease of evolution

= Objectis an instance of class.

= Class is the definition of object, defining the
components and functionality.

86

I An Example of Class

2
9
2
&

print =self.data

oW m

% =elf.data

-] o LN Ll RO

oW m

LU TR N TR Ny B

Bl =

I An Example of Class

= Object creation:
o >>> x = firstcla()
= >>>y =secondcla()

= Definition (methods & variables) visualization:

2 >>> dir(y)
. “ ['_doc_',' _module_', 'a','b', 'c', 'data’, 'display’,
'dispsh’, 'setData']
o >>> dir(x)

* ['_doc__','__module_', 'a', 'b’, 'data’, 'display’,
'setData']

88

Inheritance

= Inheritance is when an object or class is based
on another object or class, using the same
implementation or specifying implementation
to maintain the same behavior.

= Usage: class derivedClass(baseClassa,...):
<statements>
= Depth-first
o Left toright
o Self -> Father -> Grandfather

89

An Example of Class

= Method (function) call:
= >>> x.setData(*‘Nigel de Jong’)
= >>> x.display()
= >>> y.dispsh(s)

= Attribute reference:

o >>>Y.C €

Quite straightforward
5 >>>y.b ¢

20r37?
5 >>>y.a <€ Inherited attribute

90

I Class Example Enhanced

= |nitiation operation __init__:thingsto do
when right after the object is created.

= |f you are familiar with C++, recall “constructor.”

I Set Values when Hatching

1init (self, walue=

self.data = value

= LT —
) wel I i T

def setData(self, wvalue):

E'E-_f . ':E_r:-lt.-:—]_ = vVa -_1_1'5
def display(self):

Y] -_ T E E -_ f - |::E_l':'1 t":_l

= >>> x = firstcla()

= >>> vy = firstcla('lBRT?BUS?’)
= >>> x.display()

= >>>y.display()

